- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Portia (1)
-
Matherne, Jacob P (1)
-
Tymoczko, Julianna (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Generalized splines are an algebraic combinatorial framework that generalizes and unifies various established concepts across different fields, most notably the classical notion of splines and the topological notion of GKM theory. The former consists of piecewise polynomials on a combinatorial geometric object like a polytope, whose polynomial pieces agree to a specified degree of differentiability. The latter is a graph-theoretic construction of torus-equivariant cohomology that Shareshian and Wachs used to reformulate the well-known Stanley-Stembridge conjecture, a reformulation that was recently proven to hold by Brosnan and Chow and independently Guay-Paquet. This paper focuses on the theory of generalized splines. A generalized spline on a graph $$G$$ with each edge labeled by an ideal in a ring $$R$$ consists of a vertex-labeling by elements of $$R$$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the $$R$$-module of generalized splines and produce minimum generating sets for several families of graphs and edge-labelings: $1)$ for all graphs when the set of possible edge-labelings consists of at most two finitely-generated ideals, and $2)$ for cycles when the set of possible edge-labelings consists of principal ideals generated by elements of the form $(ax+by)^2$ in the polynomial ring $$\mathbb{C}[x,y]$$. We obtain the generators using a constructive algorithm that is suitable for computer implementation and give several applications, including contextualizing several results in the theory of classical (analytic) splines.more » « less
An official website of the United States government
